Building Modern Data Lakes for Analytics Using Object Storage – Satish Ramakrishnan, MinIO

Building Modern Data Lakes for Analytics Using Object Storage – Satish Ramakrishnan, MinIO

The modern data lake is distributed, unstructured and demands performance and scale – or better stated, performance at scale. Modern object stores are the ideal platform to pair with MPP query engines like Presto – particularly as the scale reaches tens or hundreds of petabytes with tens to hundreds of concurrent queries. In this talk, Satish Ramakrishnan will outline the better together attributes of the two technologies with a focus on the most sophisticated modern object storage features – from throughput optimizations, multi-cloud capabilities, cross-cloud active active replication and lifecycle management. Participants will come away with a reference architecture suited to query processing at object scale.

A Git-like Repository for your Data Lake – Vinodhini Sivakami Duraisamy, Treeverse

A Git-like Repository for your Data Lake – Vinodhini Sivakami Duraisamy, Treeverse

A Git-like Repository for your Data Lake – Vinodhini Sivakami Duraisamy, Treeverse We tend to adopt practices that improve the flexibility of development and the velocity of code deployment, but how confident are we that the complex data system is safe once it arrives in production? We must be able to experiment in production and automate actions while minimizing customer pain and reducing damage to code and data. If your product’s value is derived from data in the shape of analytics or machine learning, losing it, or having corrupted data, can easily translate into pain. In this session, you will discover how chaos engineering principles apply to distributed data systems and the tools that enable us to make our data workloads more resilient. 

How Carbon uses PrestoDB in the Cloud with Ahana to Power its Real-time Customer Dashboards

How Carbon uses PrestoDB in the Cloud with Ahana to Power its Real-time Customer Dashboards

Carbon is a real-time revenue management platform that consolidates revenue and audience analytics, data management, and yield operations into a single solution. Real-time analytics is super critical – their customers rely on real-time data to make revenue decisions. After facing issues around performance, visibility & ease of use, and serverless pricing model with AWS Athena, the team moved to a managed service for PrestoDB in the cloud – Ahana Cloud – to power their customer-facing dashboards. In this session, Jordan will discuss some of the reasons the team moved from AWS Athena to a managed PrestoDB on Intel-optimized AWS instances. He will also dive into their current architecture that includes an Ahana-managed Hive Metastore along with Apache ORC file format and an S3-based data lake. Last, he’ll share some performance benchmarks and talk about what’s next for PrestoDB at Carbon.

Build & Query Secure S3 Data Lakes with Ahana Cloud and AWS Lake Formation

Build & Query Secure S3 Data Lakes with Ahana Cloud and AWS Lake Formation

AWS Lake Formation is a service that allows data platform users to set up a secure data lake in days. Creating a data lake with Presto and AWS Lake Formation is as simple as defining data sources and what data access and security policies you want to apply. In this talk, Wen will walk through the recently announced AWS Lake Formation and Ahana integration