
Search Space Improvements:

Comprehensive Join Enumeration

This document discusses state-of-the-art concerning the comprehensive enumeration of

inner, outer, anti, and other joins types and Presto’s current limitations in this area. The

discussion also presents detailed design considerations for removing these limitations.

This document is one in a series of search space-related discussion documents that

focus on expanding and better controlling the space of plan alternatives that the Presto

optimizer considers.

Background

Relational query languages provide a high-level declarative interface for accessing

relational data. The job of the query optimizer is to translate a declarative query into an

execution plan that correctly and efficiently returns the final query result [1]. The

optimization process involves enumerating alternative execution plans from a search

space of feasible alternatives and choosing one that minimizes a cost estimate of the

efficiency of the execution plan. The optimizer generates its search space by applying

transformation rules that logically map a query to equivalent algebraic representations

and implementation rules that map those algebraic representations to execution plans

consisting of physical operators, executable by the query evaluation engine.

One of the critical tasks of an optimizer is to decide the order in which to join tables

referenced in a query. A sub-optimal join sequence can execute orders of magnitude

less efficiently than an optimal one. The optimizer generates the search space of

alternatives by applying commutative and associative rules to produce equivalent join

sequences. The join type dictates the applicable reordering rules. Inner joins are fully

commutative and associative; hence, all join orders are valid. Outer joins and anti-joins

are asymmetric operators with limited commutative and associative properties;

consequently, not all sequences of joins are valid when one or both outer joins and anti-

joins are present.

Example 1 from [3] illustrates a case where the associative properties of inner and outer

join operations do not hold. It shows that inner join operations cannot be transformed

associatively with outer joins. Failure of an optimizer to understand invalid reordering

properties would lead to an execution plan that produces an incorrect result.

 Example 2 illustrates a case where associative and commutative transformations of

outer joins are applied to reach an optimal execution plan. Association transformation

rules are first applied to form a small composite join where the single row nation table

expression result is joined with the supplier table using a left join operation. After

changing the association of the joins, the composite table joins with the larger partsupp

table via another left join operation. The optimal join order is subsequently reached by

applying transformation rules to turn the left joins into right joins with commuted

operands. The transformed execution plan now has the optimal-sized build tables for

the two hash join operations. Presto executes the sub-optimal sequence of hash joins

specified by the original query as it does not attempt to reorder joins when outer joins

are involved.

A state-of-the-art optimizer must effectively enumerate valid join sequences involving all

types of join operators, as queries with non-inner joins occur in many real-world

applications.

Prior Art Overview
The problem of reordering complex queries involving various join types is extensively

studied [2][3][4]. The outer join optimization approaches described in the referenced

prior art espouse techniques that follow these general steps:

1. A predicate optimization and join simplification step that ensures early evaluation

of predicates, and the transformation of join operations preserving non-matches

by injecting null rows into simpler joins in cases where null-intolerant predicates1

are later applied.

2. A conflict detection step that computes for each join operator in a query

expression, conflict rules that lead the join enumerator to valid join sequences

when unviolated. These conflict rules derive from analysis of the producer-

consumer relationships established in the initial query operator tree, in

conjunction with known commutative and associative join transformation rules.

As will be discussed, the art derives and encodes these rules in various ways.

3. A join enumeration step that extends the conventional join enumeration process

with the capability to evaluate the detected conflict rules so that the join

enumerator only generates valid join sequences.

 For a detailed summary of prior art, please see <link to prior art doc>

On the correct and complete enumeration of the core search

space
While the previously described approaches generate valid join sequences concerning

known commutative and associative properties of the specific join operation types under

their consideration, they do not produce the complete space of such join operation

sequences. More recent work in [4] presents techniques for enabling a dynamic

programming-based join enumerator to exhaustively generate the core search space of

valid join sequences.

They first define the core search space via application of commutative and associative

algebraic rules enabling generation of all valid alternatives to a given initial join operator

tree. They further discuss extending a conventional dynamic programming-based join

enumerator with the capability to generate this core search space. Like the previously

described approaches, a conflict detection step first analyzes the query operator tree to

derive conflict rules that guide the join enumeration process to valid join sequences.

1 The rules are applied to a canonicalized operator tree where all one-sided join
operations are written to match the direction implemented by the rules (e.g. left)

The pseudo-code above describes a mechanism for extending a dynamic programming-

based join enumerator. The DP+ method proceeds as usual by generating join plans of

progressively larger subsets S of the input sources. If there is a valid operator o to join

the pair (S1⊆ S, S2 = S \ S1) it is returned by the Applicable method (line 10), and then

used to join the best plans for S1 and S2 as recalled from the dynamic-programming

table (line 11).

If o is also commutative (line 12), DP+ also generates a commutative join plan using o

(lines 13) If o is not commutative, a join plan with commuted operands is formed based

on the cso (commute and substitute) property (line 15).

The Applicable method generates only algebraically valid join sequences in the core

search space of a query.

Detailed descriptions and definitions of the methods are described in [4]

Presto Design Considerations
This section discusses the current state of the Presto optimizer concerning join

enumeration and how these could be extended to incorporate state-of-the-art join

reordering techniques

Presto Join Enumeration Background
Presto supports inner join, cross join, left outer join, right outer join, and full outer join.

Direct runtime implementations exist for each of these join operators. In addition,

transformation rules can introduce left semi-joins and left anti-joins.

The Presto optimizer capably performs outer join simplification, as well as push down of

predicates into outer join operations [2]. The join enumerator, however, only

enumerates inner join orderings. It looks for trees of contiguous such join nodes and

flattens them into a multi-join node, which is the enumeration context input to the join

enumerator. If another type of join node is interleaved with these nodes, the

enumeration context becomes bifurcated. In this case, each separate partition of the

bifurcated join tree represents a different enumeration context. A single enumeration

context is currently limited to ten sources.

The join enumerator’s search space for a given enumeration context includes bushy

trees without composite inner size restriction [6]. There is no explicit notion of join

predicate eligibility lists [3]. A predicate is eligible for joining source partition pair (S1⊆

S, S2 = S \ S1) if it references output variables of both S1 and S2. The avoidance of

cartesian products occurs in a back-handed way. They are enumerated but assigned

infinite costs. Presumably, this is to avoid failing on disconnected join contexts.

The search space for a given enumeration context is enumerated using a naïve

memoization algorithm similar to MemoizationBasic in [7]. The optimal subplan for each

set of sources S is the one that dominates all other alternatives based solely on cost.

Generation of commutative join plans for source pairs (S1⊆ S, S2 = S \ S1) occurs

indirectly via enumeration of the entire power set of S, versus a more explicit approach

that enumerates half of the power set and forms joins for both (S1, S2) and (S2, S1) like

in DP+ (Figure 1) above

Extending Presto with Comprehensive Join Enumeration Capabilities
The general design considerations are as follows -

• Generation of an enumeration context consisting of plan nodes of all join types,

not just inner join nodes as today. During this step, a new join node explicitly

represents a left or right anti-join operation. It is transformed back to a one-sided

outer join and filter combination after join enumeration2.

• Canonicalization followed by conflict analysis. Canonicalization of the operator

tree transforms right-sided outer joins, semi-joins, and anti-joins into their left-

sided counterparts. Conflict analysis determines conflict rules for each join

operator by applying the associative patterns described in [4]

2

• Extensions to the memoization-based enumeration process to enable the

generation of only valid join sequences. These extensions are correlative to the

DP+ of Figure 1.

In addition to the general design considerations just outlined, detailed design

considerations are as follows.

• Explicitly handle cartesian products by enumerating only beneficial ones [6].

Specifically, add a test to Applicable that returns only cartesian product join

operators of benefit. To avoid failure on enumeration contexts with disconnected

components, perform a join graph analysis during the canonicalization phase and

connect those components explicitly with a tautology join predicate later

removed. To enable the generation of beneficial cartesian products, something

analogous to companion sets [3] is needed to determine join operator validity.

• Explicitly model and use join predicate extended eligibility lists or EELs [3]. A join

predicate is only eligible for combining (S1⊆ S, S2 = S \ S1) if its EEL ⊆ S. All

join predicate conjuncts share the same EEL. Explicit use of EELs in conjunction

with conflict rules allows conflict rule simplification optimizations [4] while also

optimizing the enumeration process via cartesian product deferral.

• The commutative and associative properties of Tables 2, 3, and 4 enable the

generation of valid join orders involving semi-joins; however, it is better to

eliminate them before the enumeration process by transforming existential

subqueries to an inner join and distinct combination and to convert back to semi-

joins post-enumeration using early-out join techniques [8] as inner joins are freely

reorderable whereas semi-joins are not.

Summary

A critical task in query optimization is to find the optimal evaluation order for the join

operations in a query. Inner joins are freely reorderable; hence, all evaluation orders are

valid. Other join operations, such as outer joins and anti-joins, have limited commutative

and associative properties; consequently, not all join sequences are valid when these

operators are present. A state-of-the-art optimizer must effectively enumerate valid join

sequences involving all types of join operators, as queries with non-inner joins occur in

many real-world applications. Moreover, transformation rules often introduce such join

operations. The problem of reordering joins in complex queries involving inner joins,

outer joins, anti-joins, and other join types is extensively studied [2][3][4], with [4] being

the most comprehensive. This document provides an overview of the state-of-the-art in

enumerating complex joins of various types and a blueprint for evolving the Presto

optimizer with those capabilities.

References

[1] Chaudhuri S. An overview of query optimization in relational systems. In:

Proceedings of 17th ACM SIGACT-SIGMOD-SIGART symposium on principles of

database systems. 1998. p. 34–43.

[2] Cesar A. Galindo-Legaria, et al. Outer join simplification and reordering for query

optimization. Transactions on Database Systems, 22(1), 1997

[3] Jun Rao, B. Lindsay, G. Lohman, H. Pirahesh, David E. Simmen Using eels, a

practical approach to outer join and antijoin reordering. In Proceedings of the IEEE

ICDE Conference, 2001.

[4] Moerkotte, Guido et al. “On the correct and complete enumeration of the core search

space.” ACM SIGMOD Conference (2013).

[5] Orthogonal optimization of subqueries and aggregation C. Galindo-Legaria, Milind

Joshi. Published in ACM SIGMOD Conference 1 May 2001

[6] Measuring the Complexity of Join Enumeration in Query Optimization. K Ono, GM

Lohman - VLDB, 1990

[7] P. Fender and G. Moerkotte. A new, highly efficient, and easy to implement top-

down join enumeration algorithm. In ICDE, pages 864–875, 2011.

[8] Transformations of Existential Subqueries using Early-out Joins.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+correct+and+complete+enumeration+of+the+core+search+space&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+correct+and+complete+enumeration+of+the+core+search+space&btnG=
https://github.com/prestodb/presto/issues/17927

	Background
	Prior Art Overview
	On the correct and complete enumeration of the core search space
	Presto Design Considerations
	Presto Join Enumeration Background
	Extending Presto with Comprehensive Join Enumeration Capabilities

	Summary
	References
	[8] Transformations of Existential Subqueries using Early-out Joins.

