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This document discusses state-of-the-art concerning query block merge transformations 

and Presto’s current limitations in this area. The discussion also presents design 

considerations for lifting these limitations. This is one in a series of search space-related 

discussion documents that focus on expanding and better controlling the space of 

execution plan alternatives that the Presto optimizer considers.  

Background  

 Relational query languages provide a high-level declarative interface for accessing 

relational data. The job of the query optimizer is to translate a declarative query into an 

execution plan that correctly and efficiently returns the final query result [1]. The 

optimization process involves enumerating alternative execution plans from a search 

space of feasible alternatives and choosing one that minimizes a cost estimate of the 

resources consumed or time required to execute the plan. The optimizer generates its 

search space by applying transformation rules that logically map a query to equivalent 

algebraic representations and implementation rules that map those algebraic 

representations to execution plans consisting of physical operators, executable by the 

query evaluation engine.    

A relational query written in the SQL relational query language might have multiple 

query blocks due to view references, nested table expressions, and subqueries. A query 

block is effectively a partition that needs to be optimized independently of the rest of the 

query. A SQL query may get fragmented into several query blocks depending on how 

the query is written or these boundaries may be introduced by the query optimizer as a 

result of some transformations. A query optimizer must be able to effectively merge 

multiple query blocks into equivalent single-block representations to open up the 

optimizer search space of join alternatives fully. Failure to do so can result in a highly 

suboptimal evaluation order. Transformation rules for merging query blocks require 

careful reasoning about duplicates. The work in [2] defines a set of six collaborating 

rules whose interplay guarantees the merge of table expressions for a large class of 

queries.   

Example 1  

 

CREATE VIEW olderparts AS 



   (SELECT  DISTINCT l.partkey, l.suppkey  

     FROM lineitem l, orders o   

     WHERE l.orderkey = o.orderkey AND year(o.orderdate) < 1995 ); 

   

 SELECT p.partkey, p.name, op.suppkey, p.retailprice   

 FROM part p, olderparts op  

 WHERE p.partkey = op.partkey AND p.retailprice > 1000;  

 

-- rewritten query 

 

SELECT DISTINCT p.partkey, p.name, l.suppkey, p.retailprice 

FROM part p, lineitem l, orders o 

WHERE p.partkey = l.partkey AND l.orderkey = o.orderkey AND  

             year(o.orderdate) < 1995 AND p.retailprice > 1000;  

 

 That paper first describes a suite of transformation rules that guarantees the merge of 

views and nested-table expressions. Example 1 illustrates the considerations using 

queries referencing the TPCH schema. It first defines a view “olderparts” that returns 

parts available for order before 1995. The example includes a query that then uses the 

"olderparts" view to find parts supplied before 1995 and that retail for over 1000. A 

production-grade optimizer must be able to merge the view query block with the 

referencing query block in to avoid unnecessarily restricting execution plans to those 

that first join the “lineitem” and “orders” tables. The example shows an equivalent 

rewritten query with the merged view and referencing query blocks. The SELMERGE 

rule of [2] describes the conditions for performing this type of transformation. That rule 

requires careful consideration of duplicates. The view in the example uses DISTINCT to 

remove duplicates, so the SELMERGE transformation rule needs to ensure the 

resulting query does not introduce duplicate parts into the final result. It does this by 

carefully pulling up the DISTINCT to remove duplicates introduced into the final result. 

The correctness of the pull-up of the DISTINCT operation requires the subtle 

determination that the select list of the parent query contained a unique key; otherwise, 

the removal of too many duplicates would occur. This is true because the parent query 

selects keys of the “part” table and the “olderparts” view. A separate DISTUP rule [2] 

makes this determination by analyzing the primary key constraints defined by the TPCH 

schema.  



Example 2 

 

WITH  largeorders AS  

   (SELECT DISTINCT orderkey  

    FROM lineitem  

    WHERE quantity > 10 ) 

 SELECT *  

 FROM customer c 

 WHERE NOT EXISTS (SELECT 1  

                                       FROM largeorders lo, orders o  

                                       WHERE lo.orderkey = o.orderkey AND c.custkey = o.custkey) 

— rewritten query  

 

 SELECT *  

 FROM customer c 

 WHERE NOT EXISTS (SELECT 1  

                                       FROM lineitem l, orders o  

                                       WHERE l.orderkey = o.orderkey AND  

                                                     c.custkey = o.custkey AND l.quantity > 10) 

 

 Example 2 further illustrates the subtleties of duplicate handling. It defines a view 

“largeorders” that returns orders having an item of quantity exceeding 10. That query 

uses that view to find customers without large orders. Although that view uses a 

DISTINCT operation to eliminate duplicate orders, it can be merged directly into the 

subquery without pulling up the DISTINCT as in the prior example. This is because 

existential and universally quantified subqueries are insensitive to duplicates. The 

example shows the rewritten query with the view merged into the subquery.    

Example 3 

 



SELECT * 

FROM orders  

WHERE orderkey IN (SELECT orderkey  

                                     FROM lineitem  

                                     WHERE quantity > 10) ; 

    

 — rewritten query after existential to join transformation 

         

WITH tx as (SELECT orderkey  

                      FROM lineitem  

                      WHERE quantity > 10) 

SELECT DISTINCT o.*  

FROM orders o, tx 

WHERE o.orderkey = tx.orderkey; 

 

 -- rewritten query after merge of table expression  

                

  SELECT DISTINCT o.* 

  FROM orders o, lineitem l  

  WHERE o.orderkey = l.orderkey AND l.quantity > 10 ; 

 

  In addition to merging views and table expressions, an optimizer must also be capable 

of merging existential subqueries to fully open up its search space of join alternatives. 

Example 3 illustrates the problem and transformation rule considerations. The query 

contains a subquery that returns orders having an item with an order quantity of at least 

10. The prior art in [2] defines an EtoF rule that transforms conjunctive existential 

subqueries into non-existential table expressions. The second query in the example 

illustrates the result of the transformation. Subsequent application of the suite of 

SELMERG rules would merge the subquery into the parent query block.    



The Presto optimizer cannot yet merge the views in example 1 or example 2; 

consequently, it cannot consider execution plans that join the view tables with tables in 

the referencing query blocks. Further, Presto defaults to transforming the existential 

subquery of example 3 directly into a semi-join. This limitation effectively forces join 

orders with the “lineitem” table as the inner table. The work in [3] is a step in the right 

direction as it will ultimately merge the subquery as per the final query in Example 2; 

however, that work cannot handle more complex cases, such as when the parent query 

block has joins. The following section will discuss various considerations for bringing the 

state-of-the-art into Presto to improve the optimizer view, table expression, and 

subquery merge capabilities.  

 

Presto Design Considerations  

 The examples in the previous section demonstrate opportunities for Presto to open up 

its join search space by incorporating state-of-the-art multi-block query block 

transformation techniques. The work in [2] describes a suite of transformation rules 

guaranteeing the merge of views, table expressions, and subqueries for a large class of 

queries. Those rules define transformations of a relational calculus-based internal query 

representation called QGM. An advantage of the QGM model is that it maintains a 

“select box” construct analogous to an SQL select-project-join query block. The select 

box body contains a join graph with table references as nodes and predicates as edges. 

The "select box" represents a single join search space to the join planner. The result of 

applying the suite of transformation rules is a QGM with fewer select boxes with larger 

join graphs that provide more degrees of freedom to the join planner.  

 The Presto optimizer does not have an explicit construct representing a select-project-

join query block. The closest analog to that is a tree of contiguous join nodes that 

collapses into a single multi-join node representing a single search space to the Presto 

joinplanner. Any non-join nodes interleaved with join nodes effectively create a query 

block boundary that limits the potential join search space. A key design challenge is to 

adapt the rules in [2] to a relational algebra-based query representation lacking an 

explicit query block construct as is used by Presto. 

Another option may be to explore implementing these inferred rules as a set of standard 

iterative optimizers in Presto. This may have some challenges since the Presto 

optimizer is actually a large set of iterative optimizers that work in isolation. Integrating 

query block merges into this scheme and ensuring its efficacy will require careful 

consideration and exhaustive testing. 

    

Summary   



A mature query optimizer must include advanced capabilities for merging multiple query 

blocks into equivalent single-block representations to open up the entire possible join 

search space. Transformation rules for query block merges require sophisticated 

reasoning about duplicates. The document discussed the state-of-the-art with for such 

transformations [2]. It also discussed some of Presto’s current limitations in this regard. 

The discussion also presented design considerations for augmenting Presto to lift these 

limitations. These included adapting the suite of transformation rules introduced in [2] 

for a relational algebra-based internal query representation and, in general, making 

Presto more query block cognizant by pushing up and pushing down plan nodes that 

unnecessarily introduce query block boundaries that limit the reorderability of joins. 

Project nodes are notorious for littering Presto plans and restricting the join search 

space by introducing query block boundaries. The ultimate design should give them 

careful consideration.  
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