
Search Space Improvements: Multi-

Query Block Merge Optimizations

This document discusses state-of-the-art concerning query block merge transformations

and Presto’s current limitations in this area. The discussion also presents design

considerations for lifting these limitations. This is one in a series of search space-related

discussion documents that focus on expanding and better controlling the space of

execution plan alternatives that the Presto optimizer considers.

Background

 Relational query languages provide a high-level declarative interface for accessing

relational data. The job of the query optimizer is to translate a declarative query into an

execution plan that correctly and efficiently returns the final query result [1]. The

optimization process involves enumerating alternative execution plans from a search

space of feasible alternatives and choosing one that minimizes a cost estimate of the

resources consumed or time required to execute the plan. The optimizer generates its

search space by applying transformation rules that logically map a query to equivalent

algebraic representations and implementation rules that map those algebraic

representations to execution plans consisting of physical operators, executable by the

query evaluation engine.

A relational query written in the SQL relational query language might have multiple

query blocks due to view references, nested table expressions, and subqueries. A query

block is effectively a partition that needs to be optimized independently of the rest of the

query. A SQL query may get fragmented into several query blocks depending on how

the query is written or these boundaries may be introduced by the query optimizer as a

result of some transformations. A query optimizer must be able to effectively merge

multiple query blocks into equivalent single-block representations to open up the

optimizer search space of join alternatives fully. Failure to do so can result in a highly

suboptimal evaluation order. Transformation rules for merging query blocks require

careful reasoning about duplicates. The work in [2] defines a set of six collaborating

rules whose interplay guarantees the merge of table expressions for a large class of

queries.

Example 1

CREATE VIEW olderparts AS

 (SELECT DISTINCT l.partkey, l.suppkey

 FROM lineitem l, orders o

 WHERE l.orderkey = o.orderkey AND year(o.orderdate) < 1995);

 SELECT p.partkey, p.name, op.suppkey, p.retailprice

 FROM part p, olderparts op

 WHERE p.partkey = op.partkey AND p.retailprice > 1000;

-- rewritten query

SELECT DISTINCT p.partkey, p.name, l.suppkey, p.retailprice

FROM part p, lineitem l, orders o

WHERE p.partkey = l.partkey AND l.orderkey = o.orderkey AND

 year(o.orderdate) < 1995 AND p.retailprice > 1000;

 That paper first describes a suite of transformation rules that guarantees the merge of

views and nested-table expressions. Example 1 illustrates the considerations using

queries referencing the TPCH schema. It first defines a view “olderparts” that returns

parts available for order before 1995. The example includes a query that then uses the

"olderparts" view to find parts supplied before 1995 and that retail for over 1000. A

production-grade optimizer must be able to merge the view query block with the

referencing query block in to avoid unnecessarily restricting execution plans to those

that first join the “lineitem” and “orders” tables. The example shows an equivalent

rewritten query with the merged view and referencing query blocks. The SELMERGE

rule of [2] describes the conditions for performing this type of transformation. That rule

requires careful consideration of duplicates. The view in the example uses DISTINCT to

remove duplicates, so the SELMERGE transformation rule needs to ensure the

resulting query does not introduce duplicate parts into the final result. It does this by

carefully pulling up the DISTINCT to remove duplicates introduced into the final result.

The correctness of the pull-up of the DISTINCT operation requires the subtle

determination that the select list of the parent query contained a unique key; otherwise,

the removal of too many duplicates would occur. This is true because the parent query

selects keys of the “part” table and the “olderparts” view. A separate DISTUP rule [2]

makes this determination by analyzing the primary key constraints defined by the TPCH

schema.

Example 2

WITH largeorders AS

 (SELECT DISTINCT orderkey

 FROM lineitem

 WHERE quantity > 10)

 SELECT *

 FROM customer c

 WHERE NOT EXISTS (SELECT 1

 FROM largeorders lo, orders o

 WHERE lo.orderkey = o.orderkey AND c.custkey = o.custkey)

— rewritten query

 SELECT *

 FROM customer c

 WHERE NOT EXISTS (SELECT 1

 FROM lineitem l, orders o

 WHERE l.orderkey = o.orderkey AND

 c.custkey = o.custkey AND l.quantity > 10)

 Example 2 further illustrates the subtleties of duplicate handling. It defines a view

“largeorders” that returns orders having an item of quantity exceeding 10. That query

uses that view to find customers without large orders. Although that view uses a

DISTINCT operation to eliminate duplicate orders, it can be merged directly into the

subquery without pulling up the DISTINCT as in the prior example. This is because

existential and universally quantified subqueries are insensitive to duplicates. The

example shows the rewritten query with the view merged into the subquery.

Example 3

SELECT *

FROM orders

WHERE orderkey IN (SELECT orderkey

 FROM lineitem

 WHERE quantity > 10) ;

 — rewritten query after existential to join transformation

WITH tx as (SELECT orderkey

 FROM lineitem

 WHERE quantity > 10)

SELECT DISTINCT o.*

FROM orders o, tx

WHERE o.orderkey = tx.orderkey;

 -- rewritten query after merge of table expression

 SELECT DISTINCT o.*

 FROM orders o, lineitem l

 WHERE o.orderkey = l.orderkey AND l.quantity > 10 ;

 In addition to merging views and table expressions, an optimizer must also be capable

of merging existential subqueries to fully open up its search space of join alternatives.

Example 3 illustrates the problem and transformation rule considerations. The query

contains a subquery that returns orders having an item with an order quantity of at least

10. The prior art in [2] defines an EtoF rule that transforms conjunctive existential

subqueries into non-existential table expressions. The second query in the example

illustrates the result of the transformation. Subsequent application of the suite of

SELMERG rules would merge the subquery into the parent query block.

The Presto optimizer cannot yet merge the views in example 1 or example 2;

consequently, it cannot consider execution plans that join the view tables with tables in

the referencing query blocks. Further, Presto defaults to transforming the existential

subquery of example 3 directly into a semi-join. This limitation effectively forces join

orders with the “lineitem” table as the inner table. The work in [3] is a step in the right

direction as it will ultimately merge the subquery as per the final query in Example 2;

however, that work cannot handle more complex cases, such as when the parent query

block has joins. The following section will discuss various considerations for bringing the

state-of-the-art into Presto to improve the optimizer view, table expression, and

subquery merge capabilities.

Presto Design Considerations

 The examples in the previous section demonstrate opportunities for Presto to open up

its join search space by incorporating state-of-the-art multi-block query block

transformation techniques. The work in [2] describes a suite of transformation rules

guaranteeing the merge of views, table expressions, and subqueries for a large class of

queries. Those rules define transformations of a relational calculus-based internal query

representation called QGM. An advantage of the QGM model is that it maintains a

“select box” construct analogous to an SQL select-project-join query block. The select

box body contains a join graph with table references as nodes and predicates as edges.

The "select box" represents a single join search space to the join planner. The result of

applying the suite of transformation rules is a QGM with fewer select boxes with larger

join graphs that provide more degrees of freedom to the join planner.

 The Presto optimizer does not have an explicit construct representing a select-project-

join query block. The closest analog to that is a tree of contiguous join nodes that

collapses into a single multi-join node representing a single search space to the Presto

joinplanner. Any non-join nodes interleaved with join nodes effectively create a query

block boundary that limits the potential join search space. A key design challenge is to

adapt the rules in [2] to a relational algebra-based query representation lacking an

explicit query block construct as is used by Presto.

Another option may be to explore implementing these inferred rules as a set of standard

iterative optimizers in Presto. This may have some challenges since the Presto

optimizer is actually a large set of iterative optimizers that work in isolation. Integrating

query block merges into this scheme and ensuring its efficacy will require careful

consideration and exhaustive testing.

Summary

A mature query optimizer must include advanced capabilities for merging multiple query

blocks into equivalent single-block representations to open up the entire possible join

search space. Transformation rules for query block merges require sophisticated

reasoning about duplicates. The document discussed the state-of-the-art with for such

transformations [2]. It also discussed some of Presto’s current limitations in this regard.

The discussion also presented design considerations for augmenting Presto to lift these

limitations. These included adapting the suite of transformation rules introduced in [2]

for a relational algebra-based internal query representation and, in general, making

Presto more query block cognizant by pushing up and pushing down plan nodes that

unnecessarily introduce query block boundaries that limit the reorderability of joins.

Project nodes are notorious for littering Presto plans and restricting the join search

space by introducing query block boundaries. The ultimate design should give them

careful consideration.

References

[1] Chaudhuri S. An overview of query optimization in relational systems. In:

Proceedings of 17th ACM SIGACT-SIGMOD-SIGART symposium on principles of

database systems. 1998. p. 34–43.

[2] Pirahesh H., Hellerstein J.M., Hasan W. Extensible/Rule Based Query Rewrite

Optimization in Starburst. In Proc. of ACM SIGMOD 1992.

[3] Transformations of Existential Subqueries using Early-out Joins. Presto Issue

#17927

[4] Constraint Support and Optimizations. Presto Issue #16413

https://github.com/prestodb/presto/issues/17927
https://github.com/prestodb/presto/issues/16413

