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This document discusses state-of-the-art concerning consistent and accurate cardinality 

estimation and Presto’s current limitations in this area. The discussion also presents 

detailed design considerations for removing these limitations. 

In summary, this document proposes the following changes to the optimizer: 

1. Eliminate “unknown” cardinality estimates in the optimizer. Replace “unknown” 

with heuristic values based on some specified rule. 

2. Augment the filter statistics calculator to use the Adjustment Factor (AF) 

algorithm 

3. Implement the Max Entropy (ME) algorithm for missing AFs 

4. (Optionally) Use the History-Based Optimizer (HBO) data as a source for the ME 

implementation 

5. (Optionally) Collect multivariate statistics through ANALYZE 

The rest of document covers the details on why these changes are required, and the 

implementation considerations in Presto. 

Background  

The optimization process involves enumerating alternative execution plans from a 

search space of feasible alternatives. A cost model assigns a cost, an estimate of query 

execution plan efficiency, to each potential execution plan in the search space and the 

minimum cost execution plan executed. Various factors determine the cost of an 

execution plan; however, cardinality estimation, the process for determining the size of 

intermediate results after applying predicates or aggregation, plays an outsized role in 

cost estimation. 

The goal of this document is to present the following: 

1. Fundamental cardinality estimation techniques 

2. Highlight the consistent cardinality estimation problem 

3. Provide a high-level design to achieve consistent cardinality estimates 

4. Design considerations for implementing the consistent estimations in Presto 

Fundamental Cardinality Estimation Techniques 

The cardinality estimation model forming the basis for the state-of-the-art originates 

from System R. That model performs cardinality estimation incrementally for each plan 



operator by multiplying the cardinalities of the operator’s inputs by estimates of the 

selectivity of the conjunctive predicates applied by the operator. System R assigned 

individual selectivity estimates to predicates based on statistical summaries maintained 

for both stored tables and the result tables produced by a plan operator. Its selectivity 

estimators are limited to using statistical summaries for individual attributes; hence, its 

cardinality estimation model assumed that the selectivity of each predicate was 

independent. The incremental cardinality estimation model had the desirable property of 

producing consistent cardinality estimates for equivalent subplans that may have 

applied individual predicates in different sequences, a critical aspect of any cardinality 

estimation model. 

 

Figure 1 illustrates the cardinality estimation model of System R. It shows a query of 

tables A, B, and C having a WHERE clause with a search condition that includes both 

local and join predicates. Table 1 in the figure shows the cardinality of the input 

relations, and Table 2 selectivity estimates for the top-level conjuncts as derived from 

statistical summaries of column distributions not shown. The figure also exhibits two 

alternative execution plans for the query, with output cardinality estimates for each of 

the plan nodes. Note that even though the alternative execution plans apply predicates 

in different sequences, the final cardinality estimates of the plans are equivalent, which 

must always hold for plans that produce the same results. Put differently, cardinality 

estimates, and more generally, statistical summaries that characterize the result 

produced by a plan or subplan, are logical properties independent of any physical 

implementation. 



Selectivity estimates in System R derive from simple statistical summaries that assume 

uniform column distributions such as the minimum, maximum, and number of distinct 

values of a column as well as independence between columns. These assumptions do 

not always hold which can lead to incorrect estimates. This document is not concerned 

with the predicate selectivity estimation aspect of cardinality estimation. The focus is 

instead on presenting a state-of-the-art architecture for producing consistent and 

accurate cardinality estimates given a set of selectivity estimators that are 

presumed to be accurate. 

   

The Problem with Cardinality Estimation Under the Independence Assumption    

In practice, the selectivity of predicates is not independent. In such cases, the basic 

incremental cardinality estimation approach described in the previous section leads to 

wildly underestimated cardinalities. The query in Figure 2, which seeks sales 

information for Honda Accords, illustrates the problem. The table in Figure 2 shows 

selectivity estimates for the predicates model = “Accord” and make = “Honda”, 

assuming 500 distinct car makers, an average of 8 models per manufacturer, and 

uniform distributions for both columns. If the CarSales table contains 10,000,000 rows, 

the optimizer would estimate the query cardinality as 10,000,000 * 1/500 * 1/4000 = 5 

under the independence assumption. This represents a severe underestimation since 

rows satisfying the predicate model = “Accord” always satisfy the predicate make = 

“Honda” assuming only Honda manufactures Accords. In other words, the predicates 

are highly correlated and the joint selectivity estimates of the two are much lower than 

the product of the individual selectivity estimates. 

Ideally, an optimizer would have multivariate statistics for every combination of columns 

referenced in the predicates of a workload; however, it is not feasible to collect and 

store all of this information. Thus, for a query search condition with conjunct predicates 

p1, p2, . . . , pn , the optimizer typically has access to individual selectivity estimates s1, 

s2, . … sn , as well as a limited collection of joint selectivity estimates, such as s1,2, s3,5, 

and s2,3,4. The following sections describes an extension to the incremental cardinality 

estimation model that enables the derivation of consistent and accurate cardinality 

estimates using a, possibly incomplete, knowledge set consisting of individual and joint 

selectivity estimates. 

Extending Incremental Cardinality Estimation with Adjustments 



An adjustment is a pair of the form (P, K) where P is a set of predicates of size > 1 with 

a known joint selectivity estimate and where K is a numeric correlation factor used to 

adjust an incremental cardinality estimate when the predicates in P are applied. The 

value of K is the ratio of the joint selectivity estimate of P over the product of the 

individual selectivity estimates of the predicates in P. For example, an adjustment for 

predicates p1, p2 having selectivity estimates s1, s2 and a joint selectivity estimate s1,2 is 

the pair (P, K) where P = {p1, p2} and K = s1,2 / s1 * s2. The magnitude of K effectively 

represents the extent of statistical correlation between the predicates in P. Incremental 

cardinality estimates of a plan operator are corrected by the correlation factor of eligible 

adjustments to account for this correlation. 

 

The adjust factor approach is further elaborated in Figure 3. It extends plan operators 

with two new properties: a predicate property, Preds, and an adjustment property, 

Adjust, which take into account, respectively, all predicates and adjustments applied 

thus far. An operator forms a cardinality estimate incrementally as before by computing 

the product of the input cardinality estimates of its source operators and the individual 

selectivity estimates of any predicates OP applied by the operator. The process then 

adjusts this estimate by the correlation factors of newly eligible adjustments. An 

adjustment A= (P, K) is eligible if P is a subset of the union of Preds and OP, and A is 

not a member of Adjust.   

Incremental cardinality estimation with adjustments enables the optimizer to form 

consistent and accurate cardinality estimates using available joint selectivity 

information; however, consistency requires certain conditions. Consider again the 

example in Figure 3 and assume the joint selectivity estimate of the three predicates 

Pmake, Pmodel, and Pmodel was unavailable. In this scenario, adjustment A4 is   



unavailable, and the overlapping adjustments A1, A2, and A3 all become eligible at the 

TSCAN operator of QEP1 since the subsuming adjustment A4 is not available to prune 

them.  It isn’t clear which of those three eligible overlapping adjustments to apply. The 

problem of eligible overlapping adjustments would also occur at the FETCH operators of 

QEP2 and QEP3 as none of the newly eligible adjustments would trigger the adjustment 

previously applied by the IXSCAN to get backed out; hence, inconsistent estimates 

would result since those IXSCAN operators applied different adjustments. The 

adjustment approach provides consistent and accurate cardinality estimates only if 

there is a subsuming adjustment for any overlapping adjustments. That is, if there are 

two adjustments (P1, K1) and (P2, K2) where P1 and P2 overlap, there is a third 

adjustment (P3, K3) where P1 + P2 is subsumed by P3. Hence, if given joint selectivity 

estimates for P1 and P2, we must also have a joint selectivity estimate for P3. 

Filling in the Joint Selectivity Gaps with Max Entropy 

The Max Entropy approach to cardinality estimation (ME) [8] formalizes the problem of 

selectivity estimation for conjunctive predicates given partial joint selectivity information. 

For example, from a known set of selectivity estimates such as {S1, S2, S3, S1,2, S2,3} it 

can provide estimates for S1,3 and S1,2,3 that are consistent relative to the initial set of 

known estimates; hence, ME enables the adjustment approach to form consistent 

cardinality estimates by generating missing adjustments that subsume overlapping 

adjustments. 

ME formulates an optimization problem where the objective is to find missing joint 

selectivity estimates subject to a set of constraints represented by an initial set of known 

individual and joint selectivity estimates. The solution determines a probability 

distribution that maximizes the entropy function [9] and is consistent concerning the 

known information. ME formulates the optimization problem for a given set of predicates 

P = {p1, p2, . ., pn} by encoding each predicate as a binary string of length n based on a 

disjunctive normal form (DNF) representation of those predicates.  For example, when n 

= 3, the string b = 100 denotes the DNF representation p1 ∧ ¬p2 ∧ ¬p3,  



 

Figure 4 shows the probability space and optimization problem formulation for P = {p1, 

p2, p3} given known selectivity estimates 𝑆1 = 0.1, 𝑆2 = 0.2, 𝑆3 = 0.25, 𝑆1,2 = 0.05, 

S1,2=0.03. Each 𝑥𝑎𝑏𝑐 in the probability space represents a DNF encoding of P. For 

example, if 𝑝1  represents make = “Honda” and 𝑝2 represents model = “Accord”, 𝑥11 

represents the query predicate ‘make = “Honda” AND model = “Accord”’ whereas 𝑥01 

represents ‘make != “Honda” AND model = “Accord”‘. Moreover, an algebraic constraint 

of  𝑥𝑎𝑏𝑐terms is formed for each known selectivity estimate. For example, 𝑆1,2 is 

represented by the constraint 𝑥110 + 𝑥111 = 0.5. Using the previous example of makes 

and models you had run a previous query where you know the selectivity of just ‘make = 

“Honda”’ = 0.4, you could model this as a constraint as 𝑥10 + 𝑥11 = 0.4 . ME computes a 

solution for all 𝑥𝑎𝑏𝑐 in the probability space using Lagrange multipliers and an iterative 

scaling algorithm as described in [8]. The selectivity estimates computed for the 

example problem in Figure 4 are 𝑠1,2,3 = 𝑥111 = 0.015 and 𝑠2,3 = 𝑥111 + 𝑥011 = 0.05167.    

ME also addresses practical details such as zero-term elimination, which occurs when 

𝑆1 = 𝑆1,2, and the elimination of mutual inconsistencies between selectivity estimates in 

the initial knowledge set like S1 >= S1,2. The ME algorithm is parallelized by partitioning 

the problem space into non-empty disjoint subsets. For example, if the initial knowledge 

set is S1,2 S2,3, S3,4, S5,6, S6,7. ME can be solved separately for disjoint partitions P1 

= S1,2 S2,3, S3,4 and P2 = S5,6, S6,7. The final solution ensures subsuming joint 

selectivity estimates for any two overlapping estimates in P1 and P2, as there are no 

overlapping adjustments that span disjoint sets P1 and P2. 

Presto Design Considerations 

Current State of Optimizer Cardinality Estimation 

Join order enumeration is the primary context where the optimizer makes cost-based 

decisions. When computing the cost of a plan node, the optimizer determines global a 



cardinality estimate and distribution statistics for the output variables of each source 

plan node in a bottom-up recursive fashion starting from base table-level or partition-

level statistics. 

The optimizer derives selectivity estimates for filters, joins, and other operators that 

apply predicates using the propagated variable statistics assuming variable distributions 

are statistically independent. Local cardinality estimates are formed by uniformly 

apportioning the global estimate to local execution costs depending on the degree of 

parallelism for a stage. The basic model does not support state-of-the-art estimators 

such as single or joint column histograms, statistics on views, predicate sampling, or AI 

models; hence, it is analogous to the System R cardinality estimation model as 

previously described. 

Cost and Cardinality Estimation Model Uncertainty 

The Presto cost-based optimizer effectively gives up and resorts to heuristics when it 

loses confidence in its cardinality and cost estimates. This occurs in various situations, 

like when it confronts complex predicates or those involving variables where statistics 

cannot be derived. The optimizer does not continue on using default selectivity values, 

as would most state-of-the-art optimizers. The cases where the estimation model enters 

the uncertain state result in unpredictable optimization behavior; hence, eliminating this 

modus operandi is highly recommended. There are a variety of techniques for mitigating 

uncertainty, including exploiting optimization-time sampling [10, 11]. The history-based 

optimizer is also a mitigator of the uncertainty problem.  Default selectivity estimates are 

the preferred fallback when all other options are exhausted. 

History-Based Optimizer 

The history-based optimizer (HBO) improves cardinality estimation by introducing a 

feedback loop from query execution to query optimization, similar in spirit to [6]. The 

current focus is improved cardinality estimates for joins and partial aggregation; 

however, it is applicable to any subplan types. The runtime component of HBO collects 

actual cardinality and output variable statistics for targeted subplans and associates 

them with a Merkle hash of a canonicalized logical representation of the subplan. The 

HBO maintains the combination of Merkle subplan hash and actual statistics in a history 

database. The query optimization component of HBO uses the actual cardinality and 

variable statistics stored in the history database rather than the usual estimates for 

subplans whose Merkle hash matches the history database hash. This aspect of HBO is 

similar to [4, 5], which improves cardinality estimates by exploiting statistics on views.  

Notably, HBO is a source for obtaining joint selectivity estimates and multivariate 

statistics that, if used consistently as per the prior art, would allow the presto optimizer 

to obtain more accurate cost estimates. 

Summary 



In order to achieve consistent cardinality estimations, Presto needs to develop a new 

framework within the optimizer for performing its cardinality calculations.  

The first hurdle to tackle is removing “unknown” estimates, even when no statistics are 

available to the optimizer. A new heuristic needs to be agreed upon and used in the 

cases of unknown values. This requires an update to the `Estimate` class for Presto’s 

cost calculations and locating all the call-sites for unknowns in order to replace them 

with some type of heuristic. By removing unknown heuristics, the optimizer will be able 

to use the AF calculations 

The AF algorithm for cardinality estimations introduces the ability for the optimizer to 

account for column correlations within the cardinality estimation framework. Introducing 

AF into the Presto optimizer’s current cardinality calculations enables correct 

calculations in the face of correlated columns. 

Finally, for the search space to be explored properly plans need to come up with 

consistent estimates, regardless of whether the AF factors are known or not. This is 

where the ME algorithm helps generate consistent estimates even when AF factors are 

unknown. When using ME without any known AF factors, the algorithm converges on 

the independence assumption. However, with some AF factors known, you can achieve 

better and consistent estimates.  

Lastly, the data sources used for AF factors to the ME estimation can be pulled from a 

variety of sources. This could come from the HBO, table or partition stats, or even 

stored samples. We should provide a way in the cardinality estimation framework to 

derive known AF factors from a variety of sources during the optimization phase. 
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