
Cost Model Improvements: An

Architecture for Accurate and

Consistent Cardinality Estimation

This document discusses state-of-the-art concerning consistent and accurate cardinality

estimation and Presto’s current limitations in this area. The discussion also presents

detailed design considerations for removing these limitations.

In summary, this document proposes the following changes to the optimizer:

1. Eliminate “unknown” cardinality estimates in the optimizer. Replace “unknown”

with heuristic values based on some specified rule.

2. Augment the filter statistics calculator to use the Adjustment Factor (AF)

algorithm

3. Implement the Max Entropy (ME) algorithm for missing AFs

4. (Optionally) Use the History-Based Optimizer (HBO) data as a source for the ME

implementation

5. (Optionally) Collect multivariate statistics through ANALYZE

The rest of document covers the details on why these changes are required, and the

implementation considerations in Presto.

Background

The optimization process involves enumerating alternative execution plans from a

search space of feasible alternatives. A cost model assigns a cost, an estimate of query

execution plan efficiency, to each potential execution plan in the search space and the

minimum cost execution plan executed. Various factors determine the cost of an

execution plan; however, cardinality estimation, the process for determining the size of

intermediate results after applying predicates or aggregation, plays an outsized role in

cost estimation.

The goal of this document is to present the following:

1. Fundamental cardinality estimation techniques

2. Highlight the consistent cardinality estimation problem

3. Provide a high-level design to achieve consistent cardinality estimates

4. Design considerations for implementing the consistent estimations in Presto

Fundamental Cardinality Estimation Techniques

The cardinality estimation model forming the basis for the state-of-the-art originates

from System R. That model performs cardinality estimation incrementally for each plan

operator by multiplying the cardinalities of the operator’s inputs by estimates of the

selectivity of the conjunctive predicates applied by the operator. System R assigned

individual selectivity estimates to predicates based on statistical summaries maintained

for both stored tables and the result tables produced by a plan operator. Its selectivity

estimators are limited to using statistical summaries for individual attributes; hence, its

cardinality estimation model assumed that the selectivity of each predicate was

independent. The incremental cardinality estimation model had the desirable property of

producing consistent cardinality estimates for equivalent subplans that may have

applied individual predicates in different sequences, a critical aspect of any cardinality

estimation model.

Figure 1 illustrates the cardinality estimation model of System R. It shows a query of

tables A, B, and C having a WHERE clause with a search condition that includes both

local and join predicates. Table 1 in the figure shows the cardinality of the input

relations, and Table 2 selectivity estimates for the top-level conjuncts as derived from

statistical summaries of column distributions not shown. The figure also exhibits two

alternative execution plans for the query, with output cardinality estimates for each of

the plan nodes. Note that even though the alternative execution plans apply predicates

in different sequences, the final cardinality estimates of the plans are equivalent, which

must always hold for plans that produce the same results. Put differently, cardinality

estimates, and more generally, statistical summaries that characterize the result

produced by a plan or subplan, are logical properties independent of any physical

implementation.

Selectivity estimates in System R derive from simple statistical summaries that assume

uniform column distributions such as the minimum, maximum, and number of distinct

values of a column as well as independence between columns. These assumptions do

not always hold which can lead to incorrect estimates. This document is not concerned

with the predicate selectivity estimation aspect of cardinality estimation. The focus is

instead on presenting a state-of-the-art architecture for producing consistent and

accurate cardinality estimates given a set of selectivity estimators that are

presumed to be accurate.

The Problem with Cardinality Estimation Under the Independence Assumption

In practice, the selectivity of predicates is not independent. In such cases, the basic

incremental cardinality estimation approach described in the previous section leads to

wildly underestimated cardinalities. The query in Figure 2, which seeks sales

information for Honda Accords, illustrates the problem. The table in Figure 2 shows

selectivity estimates for the predicates model = “Accord” and make = “Honda”,

assuming 500 distinct car makers, an average of 8 models per manufacturer, and

uniform distributions for both columns. If the CarSales table contains 10,000,000 rows,

the optimizer would estimate the query cardinality as 10,000,000 * 1/500 * 1/4000 = 5

under the independence assumption. This represents a severe underestimation since

rows satisfying the predicate model = “Accord” always satisfy the predicate make =

“Honda” assuming only Honda manufactures Accords. In other words, the predicates

are highly correlated and the joint selectivity estimates of the two are much lower than

the product of the individual selectivity estimates.

Ideally, an optimizer would have multivariate statistics for every combination of columns

referenced in the predicates of a workload; however, it is not feasible to collect and

store all of this information. Thus, for a query search condition with conjunct predicates

p1, p2, . . . , pn , the optimizer typically has access to individual selectivity estimates s1,

s2, . … sn , as well as a limited collection of joint selectivity estimates, such as s1,2, s3,5,

and s2,3,4. The following sections describes an extension to the incremental cardinality

estimation model that enables the derivation of consistent and accurate cardinality

estimates using a, possibly incomplete, knowledge set consisting of individual and joint

selectivity estimates.

Extending Incremental Cardinality Estimation with Adjustments

An adjustment is a pair of the form (P, K) where P is a set of predicates of size > 1 with

a known joint selectivity estimate and where K is a numeric correlation factor used to

adjust an incremental cardinality estimate when the predicates in P are applied. The

value of K is the ratio of the joint selectivity estimate of P over the product of the

individual selectivity estimates of the predicates in P. For example, an adjustment for

predicates p1, p2 having selectivity estimates s1, s2 and a joint selectivity estimate s1,2 is

the pair (P, K) where P = {p1, p2} and K = s1,2 / s1 * s2. The magnitude of K effectively

represents the extent of statistical correlation between the predicates in P. Incremental

cardinality estimates of a plan operator are corrected by the correlation factor of eligible

adjustments to account for this correlation.

The adjust factor approach is further elaborated in Figure 3. It extends plan operators

with two new properties: a predicate property, Preds, and an adjustment property,

Adjust, which take into account, respectively, all predicates and adjustments applied

thus far. An operator forms a cardinality estimate incrementally as before by computing

the product of the input cardinality estimates of its source operators and the individual

selectivity estimates of any predicates OP applied by the operator. The process then

adjusts this estimate by the correlation factors of newly eligible adjustments. An

adjustment A= (P, K) is eligible if P is a subset of the union of Preds and OP, and A is

not a member of Adjust.

Incremental cardinality estimation with adjustments enables the optimizer to form

consistent and accurate cardinality estimates using available joint selectivity

information; however, consistency requires certain conditions. Consider again the

example in Figure 3 and assume the joint selectivity estimate of the three predicates

Pmake, Pmodel, and Pmodel was unavailable. In this scenario, adjustment A4 is

unavailable, and the overlapping adjustments A1, A2, and A3 all become eligible at the

TSCAN operator of QEP1 since the subsuming adjustment A4 is not available to prune

them. It isn’t clear which of those three eligible overlapping adjustments to apply. The

problem of eligible overlapping adjustments would also occur at the FETCH operators of

QEP2 and QEP3 as none of the newly eligible adjustments would trigger the adjustment

previously applied by the IXSCAN to get backed out; hence, inconsistent estimates

would result since those IXSCAN operators applied different adjustments. The

adjustment approach provides consistent and accurate cardinality estimates only if

there is a subsuming adjustment for any overlapping adjustments. That is, if there are

two adjustments (P1, K1) and (P2, K2) where P1 and P2 overlap, there is a third

adjustment (P3, K3) where P1 + P2 is subsumed by P3. Hence, if given joint selectivity

estimates for P1 and P2, we must also have a joint selectivity estimate for P3.

Filling in the Joint Selectivity Gaps with Max Entropy

The Max Entropy approach to cardinality estimation (ME) [8] formalizes the problem of

selectivity estimation for conjunctive predicates given partial joint selectivity information.

For example, from a known set of selectivity estimates such as {S1, S2, S3, S1,2, S2,3} it

can provide estimates for S1,3 and S1,2,3 that are consistent relative to the initial set of

known estimates; hence, ME enables the adjustment approach to form consistent

cardinality estimates by generating missing adjustments that subsume overlapping

adjustments.

ME formulates an optimization problem where the objective is to find missing joint

selectivity estimates subject to a set of constraints represented by an initial set of known

individual and joint selectivity estimates. The solution determines a probability

distribution that maximizes the entropy function [9] and is consistent concerning the

known information. ME formulates the optimization problem for a given set of predicates

P = {p1, p2, . ., pn} by encoding each predicate as a binary string of length n based on a

disjunctive normal form (DNF) representation of those predicates. For example, when n

= 3, the string b = 100 denotes the DNF representation p1 ∧ ¬p2 ∧ ¬p3,

Figure 4 shows the probability space and optimization problem formulation for P = {p1,

p2, p3} given known selectivity estimates 𝑆1 = 0.1, 𝑆2 = 0.2, 𝑆3 = 0.25, 𝑆1,2 = 0.05,

S1,2=0.03. Each 𝑥𝑎𝑏𝑐 in the probability space represents a DNF encoding of P. For

example, if 𝑝1 represents make = “Honda” and 𝑝2 represents model = “Accord”, 𝑥11

represents the query predicate ‘make = “Honda” AND model = “Accord”’ whereas 𝑥01

represents ‘make != “Honda” AND model = “Accord”‘. Moreover, an algebraic constraint

of  𝑥𝑎𝑏𝑐terms is formed for each known selectivity estimate. For example, 𝑆1,2 is

represented by the constraint 𝑥110 + 𝑥111 = 0.5. Using the previous example of makes

and models you had run a previous query where you know the selectivity of just ‘make =

“Honda”’ = 0.4, you could model this as a constraint as 𝑥10 + 𝑥11 = 0.4 . ME computes a

solution for all 𝑥𝑎𝑏𝑐 in the probability space using Lagrange multipliers and an iterative

scaling algorithm as described in [8]. The selectivity estimates computed for the

example problem in Figure 4 are 𝑠1,2,3 = 𝑥111 = 0.015 and 𝑠2,3 = 𝑥111 + 𝑥011 = 0.05167.

ME also addresses practical details such as zero-term elimination, which occurs when

𝑆1 = 𝑆1,2, and the elimination of mutual inconsistencies between selectivity estimates in

the initial knowledge set like S1 >= S1,2. The ME algorithm is parallelized by partitioning

the problem space into non-empty disjoint subsets. For example, if the initial knowledge

set is S1,2 S2,3, S3,4, S5,6, S6,7. ME can be solved separately for disjoint partitions P1

= S1,2 S2,3, S3,4 and P2 = S5,6, S6,7. The final solution ensures subsuming joint

selectivity estimates for any two overlapping estimates in P1 and P2, as there are no

overlapping adjustments that span disjoint sets P1 and P2.

Presto Design Considerations

Current State of Optimizer Cardinality Estimation

Join order enumeration is the primary context where the optimizer makes cost-based

decisions. When computing the cost of a plan node, the optimizer determines global a

cardinality estimate and distribution statistics for the output variables of each source

plan node in a bottom-up recursive fashion starting from base table-level or partition-

level statistics.

The optimizer derives selectivity estimates for filters, joins, and other operators that

apply predicates using the propagated variable statistics assuming variable distributions

are statistically independent. Local cardinality estimates are formed by uniformly

apportioning the global estimate to local execution costs depending on the degree of

parallelism for a stage. The basic model does not support state-of-the-art estimators

such as single or joint column histograms, statistics on views, predicate sampling, or AI

models; hence, it is analogous to the System R cardinality estimation model as

previously described.

Cost and Cardinality Estimation Model Uncertainty

The Presto cost-based optimizer effectively gives up and resorts to heuristics when it

loses confidence in its cardinality and cost estimates. This occurs in various situations,

like when it confronts complex predicates or those involving variables where statistics

cannot be derived. The optimizer does not continue on using default selectivity values,

as would most state-of-the-art optimizers. The cases where the estimation model enters

the uncertain state result in unpredictable optimization behavior; hence, eliminating this

modus operandi is highly recommended. There are a variety of techniques for mitigating

uncertainty, including exploiting optimization-time sampling [10, 11]. The history-based

optimizer is also a mitigator of the uncertainty problem. Default selectivity estimates are

the preferred fallback when all other options are exhausted.

History-Based Optimizer

The history-based optimizer (HBO) improves cardinality estimation by introducing a

feedback loop from query execution to query optimization, similar in spirit to [6]. The

current focus is improved cardinality estimates for joins and partial aggregation;

however, it is applicable to any subplan types. The runtime component of HBO collects

actual cardinality and output variable statistics for targeted subplans and associates

them with a Merkle hash of a canonicalized logical representation of the subplan. The

HBO maintains the combination of Merkle subplan hash and actual statistics in a history

database. The query optimization component of HBO uses the actual cardinality and

variable statistics stored in the history database rather than the usual estimates for

subplans whose Merkle hash matches the history database hash. This aspect of HBO is

similar to [4, 5], which improves cardinality estimates by exploiting statistics on views.

Notably, HBO is a source for obtaining joint selectivity estimates and multivariate

statistics that, if used consistently as per the prior art, would allow the presto optimizer

to obtain more accurate cost estimates.

Summary

In order to achieve consistent cardinality estimations, Presto needs to develop a new

framework within the optimizer for performing its cardinality calculations.

The first hurdle to tackle is removing “unknown” estimates, even when no statistics are

available to the optimizer. A new heuristic needs to be agreed upon and used in the

cases of unknown values. This requires an update to the `Estimate` class for Presto’s

cost calculations and locating all the call-sites for unknowns in order to replace them

with some type of heuristic. By removing unknown heuristics, the optimizer will be able

to use the AF calculations

The AF algorithm for cardinality estimations introduces the ability for the optimizer to

account for column correlations within the cardinality estimation framework. Introducing

AF into the Presto optimizer’s current cardinality calculations enables correct

calculations in the face of correlated columns.

Finally, for the search space to be explored properly plans need to come up with

consistent estimates, regardless of whether the AF factors are known or not. This is

where the ME algorithm helps generate consistent estimates even when AF factors are

unknown. When using ME without any known AF factors, the algorithm converges on

the independence assumption. However, with some AF factors known, you can achieve

better and consistent estimates.

Lastly, the data sources used for AF factors to the ME estimation can be pulled from a

variety of sources. This could come from the HBO, table or partition stats, or even

stored samples. We should provide a way in the cardinality estimation framework to

derive known AF factors from a variety of sources during the optimization phase.

References

[1] Selinger, P. G., Astrahan, M-M., Chamberlin. D. D., Lorie. R. A., Price T. G. Access

Path Selection in a Relational Database System. In Readings in Database Systems

Morgan Kaufman.

[2] Poosala.V.. Ioannidis. Y.. Harts, P., Shekita. E. Improved Histograms for Selectivity

Estimation. In Proc. of ACM SIGMOD, Montreal, Canada 1996.

[3] Poosala, V., Ioannidis, Y.E. Selectivity Estimation Without the Attribute Value

Independence Assumption. In Proc. of VLDB, Athens,1997.

[4] Query optimization technique for obtaining improved cardinality estimates using

statistics on pre-defined queries Patent number: 8386450. David Simmen

[5] Exploiting statistics on query expressions for optimization. Bruno, N. Chaudhuri, S.

Proceedings of the 2002 ACM SIGMOD international conference on Management of

data. June 2002

[6] Stillger, M., Lohman, G., Markl, V., Kandil, M.: LEO – DB2’s learning optimizer.

VLDB 19–28 (2001)

[7] NeuroCard: One Cardinality Estimator for All Tables

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, Ion

Stoica. VLDB 2021.

[8] Consistent selectivity estimation via maximum entropy V Markl, PJ Haas, M Kutsch,

N Megiddo, U Srivastava… - The VLDB journal, 2007

[9] Entropy (Information Theory)

https://en.wikipedia.org/wiki/Entropy_(information_theory)

[10] Reference to Zack’s stored sample work.

[11] Reference to Anant’s quick-stats work.

https://arxiv.org/pdf/2006.08109.pdf
https://arxiv.org/search/cs?searchtype=author&query=Yang,+Z
http://www-db.disi.unibo.it/courses/TBD/papers/MHK+07.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/MHK+07.pdf
https://en.wikipedia.org/wiki/Entropy_(information_theory)

	[7] NeuroCard: One Cardinality Estimator for All Tables

