Iceberg Connector#

Overview#

The Iceberg connector allows querying data stored in Iceberg tables.

Metastores#

Iceberg tables store most of the metadata in the metadata files, along with the data on the filesystem, but it still requires a central place to find the current location of the current metadata pointer for a table. This central place is called the Iceberg Catalog. The Presto Iceberg connector supports different types of Iceberg Catalogs : Hive Metastore, GLUE, NESSIE, and HADOOP.

To configure the Iceberg connector, create a catalog properties file etc/catalog/iceberg.properties. To define the catalog type, iceberg.catalog.type property is required along with the following contents, with the property values replaced as follows:

Hive Metastore catalog#

The Iceberg connector supports the same configuration for HMS as a Hive connector.

connector.name=iceberg
hive.metastore.uri=hostname:port
iceberg.catalog.type=hive

Glue catalog#

The Iceberg connector supports the same configuration for Glue as a Hive connector.

connector.name=iceberg
hive.metastore=glue
iceberg.catalog.type=hive

Nessie catalog#

To use a Nessie catalog, configure the catalog type as iceberg.catalog.type=nessie.

connector.name=iceberg
iceberg.catalog.type=nessie
iceberg.catalog.warehouse=/tmp
iceberg.nessie.uri=https://localhost:19120/api/v1

Additional supported properties for the Nessie catalog:

Property Name

Description

iceberg.nessie.ref

The branch/tag to use for Nessie, defaults to main.

iceberg.nessie.uri

Nessie API endpoint URI (required). Example: https://localhost:19120/api/v1

iceberg.nessie.auth.type

The authentication type to use. Available values are BASIC or BEARER. Example: BEARER

Note: Nessie BASIC authentication type is deprecated, this will be removed in upcoming release

iceberg.nessie.auth.basic.username

The username to use with BASIC authentication. Example: test_user

iceberg.nessie.auth.basic.password

The password to use with BASIC authentication. Example: my$ecretPass

iceberg.nessie.auth.bearer.token

The token to use with BEARER authentication. Example: SXVLUXUhIExFQ0tFUiEK

iceberg.nessie.read-timeout-ms

The read timeout in milliseconds for requests to the Nessie server. Example: 5000

iceberg.nessie.connect-timeout-ms

The connection timeout in milliseconds for the connection requests to the Nessie server. Example: 10000

iceberg.nessie.compression-enabled

Configuration of whether compression should be enabled or not for requests to the Nessie server, defaults to true.

iceberg.nessie.client-builder-impl

Configuration of the custom ClientBuilder implementation class to be used.

Setting Up Nessie With Docker#

To set up a Nessie instance locally using the Docker image, see Setting up Nessie. Once the Docker instance is up and running, you should see logs similar to the following example:

2023-09-05 13:11:37,905 INFO  [io.quarkus] (main) nessie-quarkus 0.69.0 on JVM (powered by Quarkus 3.2.4.Final) started in 1.921s. Listening on: http://0.0.0.0:19120
2023-09-05 13:11:37,906 INFO  [io.quarkus] (main) Profile prod activated.
2023-09-05 13:11:37,906 INFO  [io.quarkus] (main) Installed features: [agroal, amazon-dynamodb, cassandra-client, cdi, google-cloud-bigtable, hibernate-validator, jdbc-postgresql, logging-sentry, micrometer, mongodb-client, narayana-jta, oidc, opentelemetry, reactive-routes, resteasy, resteasy-jackson, security, security-properties-file, smallrye-context-propagation, smallrye-health, smallrye-openapi, swagger-ui, vertx]

If log messages related to Nessie’s OpenTelemetry collector appear similar to the following example, you can disable OpenTelemetry using the configuration option quarkus.otel.sdk.disabled=true.

2023-08-27 11:10:02,492 INFO  [io.qua.htt.access-log] (executor-thread-1) 172.17.0.1 - - [27/Aug/2023:11:10:02 +0000] "GET /api/v1/config HTTP/1.1" 200 62
2023-08-27 11:10:05,007 SEVERE [io.ope.exp.int.grp.OkHttpGrpcExporter] (OkHttp http://localhost:4317/...) Failed to export spans. The request could not be executed. Full error message: Failed to connect to localhost/127.0.0.1:4317

For example, start the Docker image using the following command: docker run -p 19120:19120 -e QUARKUS_OTEL_SDK_DISABLED=true ghcr.io/projectnessie/nessie

For more information about this configuration option and other related options, see the OpenTelemetry Configuration Reference.

For more information about troubleshooting OpenTelemetry traces, see Troubleshooting traces.

If an error similar to the following example is displayed, this is probably because you are interacting with an http server, and not an https server. You need to set iceberg.nessie.uri to http://localhost:19120/api/v1.

Caused by: javax.net.ssl.SSLException: Unsupported or unrecognized SSL message
    at sun.security.ssl.SSLSocketInputRecord.handleUnknownRecord(SSLSocketInputRecord.java:448)
    at sun.security.ssl.SSLSocketInputRecord.decode(SSLSocketInputRecord.java:174)
    at sun.security.ssl.SSLTransport.decode(SSLTransport.java:111)
    at sun.security.ssl.SSLSocketImpl.decode(SSLSocketImpl.java:1320)
    at sun.security.ssl.SSLSocketImpl.readHandshakeRecord(SSLSocketImpl.java:1233)
    at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:417)
    at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:389)
    at sun.net.www.protocol.https.HttpsClient.afterConnect(HttpsClient.java:558)
    at sun.net.www.protocol.https.AbstractDelegateHttpsURLConnection.connect(AbstractDelegateHttpsURLConnection.java:201)
    at sun.net.www.protocol.https.HttpsURLConnectionImpl.connect(HttpsURLConnectionImpl.java:167)
    at org.projectnessie.client.http.impl.jdk8.UrlConnectionRequest.executeRequest(UrlConnectionRequest.java:71)
    ... 42 more

Hadoop catalog#

To use a Hadoop catalog, configure the catalog type as iceberg.catalog.type=hadoop

connector.name=iceberg
iceberg.catalog.type=hadoop
iceberg.catalog.warehouse=hdfs://hostname:port

Configuration Properties#

Note

The Iceberg connector supports configuration options for Amazon S3 as a Hive connector.

The following configuration properties are available:

Property Name

Description

Default

hive.metastore.uri

The URI(s) of the Hive metastore to connect to using the Thrift protocol. If multiple URIs are provided, the first URI is used by default, and the rest of the URIs are fallback metastores. Example: thrift://192.0.2.3:9083 or thrift://192.0.2.3:9083,thrift://192.0.2.4:9083 This property is required if the iceberg.catalog.type is hive. Otherwise, it will be ignored.

iceberg.file-format

The storage file format for Iceberg tables. The available values are PARQUET and ORC.

ORC

iceberg.compression-codec

The compression codec to use when writing files. The available values are NONE, SNAPPY, GZIP, LZ4, and ZSTD.

GZIP

iceberg.catalog.type

The catalog type for Iceberg tables. The available values are hive, hadoop, and nessie corresponding to the catalogs in Iceberg.

hive

iceberg.catalog.warehouse

The catalog warehouse root path for Iceberg tables. Example: hdfs://nn:8020/warehouse/path This property is required if the iceberg.catalog.type is hadoop. Otherwise, it will be ignored.

iceberg.catalog.cached-catalog-num

The number of Iceberg catalogs to cache. This property is required if the iceberg.catalog.type is hadoop. Otherwise, it will be ignored.

10

iceberg.hadoop.config.resources

The path(s) for Hadoop configuration resources. Example: /etc/hadoop/conf/core-site.xml. This property is required if the iceberg.catalog.type is hadoop. Otherwise, it will be ignored.

iceberg.max-partitions-per-writer

The Maximum number of partitions handled per writer.

100

iceberg.minimum-assigned-split-weight

A decimal value in the range (0, 1] is used as a minimum for weights assigned to each split. A low value may improve performance on tables with small files. A higher value may improve performance for queries with highly skewed aggregations or joins.

0.05

iceberg.enable-merge-on-read-mode

Enable reading base tables that use merge-on-read for updates.

true

iceberg.delete-as-join-rewrite-enabled

When enabled, equality delete row filtering is applied as a join with the data of the equality delete files.

true

Table Properties#

Table properties set metadata for the underlying tables. This is key for CREATE TABLE/CREATE TABLE AS statements. Table properties are passed to the connector using a WITH clause:

CREATE TABLE tablename
WITH (
    property_name = property_value,
    ...
)

The following table properties are available, which are specific to the Presto Iceberg connector:

Property Name

Description

format

Optionally specifies the format of table data files, either PARQUET or ORC. Defaults to PARQUET.

partitioning

Optionally specifies table partitioning. If a table is partitioned by columns c1 and c2, the partitioning property is partitioning = ARRAY['c1', 'c2'].

location

Optionally specifies the file system location URI for the table.

format_version

Optionally specifies the format version of the Iceberg specification to use for new tables, either 1 or 2. Defaults to 1.

The table definition below specifies format ORC, partitioning by columns c1 and c2, and a file system location of s3://test_bucket/test_schema/test_table:

CREATE TABLE test_table (
    c1 bigint,
    c2 varchar,
    c3 double
)
WITH (
    format = 'ORC',
    partitioning = ARRAY['c1', 'c2'],
    location = 's3://test_bucket/test_schema/test_table')
)

Session Properties#

Session properties set behavior changes for queries executed within the given session.

Property Name

Description

iceberg.delete_as_join_rewrite_enabled

Overrides the behavior of the connector property iceberg.delete-as-join-rewrite-enabled in the current session.

Caching Support#

Manifest File Caching#

As of Iceberg version 1.1.0, Apache Iceberg provides a mechanism to cache the contents of Iceberg manifest files in memory. This feature helps to reduce repeated reads of small Iceberg manifest files from remote storage.

Note

Currently, manifest file caching is supported for Hadoop and Nessie catalogs in the Presto Iceberg connector.

The following configuration properties are available:

Property Name

Description

Default

iceberg.io.manifest.cache-enabled

Enable or disable the manifest caching feature. This feature is only available if iceberg.catalog.type is hadoop or nessie.

false

iceberg.io-impl

Custom FileIO implementation to use in a catalog. It must be set to enable manifest caching.

org.apache.iceberg.hadoop.HadoopFileIO

iceberg.io.manifest.cache.max-total-bytes

Maximum size of cache size in bytes.

104857600

iceberg.io.manifest.cache.expiration-interval-ms

Maximum time duration in milliseconds for which an entry stays in the manifest cache.

60000

iceberg.io.manifest.cache.max-content-length

Maximum length of a manifest file to be considered for caching in bytes. Manifest files with a length exceeding this size will not be cached.

8388608

Alluxio Data Cache#

A Presto worker caches remote storage data in its original form (compressed and possibly encrypted) on local SSD upon read.

The following configuration properties are required to set in the Iceberg catalog file (catalog/iceberg.properties):

cache.enabled=true
cache.base-directory=file:///mnt/flash/data
cache.type=ALLUXIO
cache.alluxio.max-cache-size=1600GB
hive.node-selection-strategy=SOFT_AFFINITY

JMX queries to get the metrics and verify the cache usage:

SELECT * FROM jmx.current."com.facebook.alluxio:name=client.cachehitrate,type=gauges";

SELECT * FROM jmx.current."com.facebook.alluxio:name=client.cachebytesreadcache,type=meters";

SHOW TABLES FROM jmx.current like '%alluxio%';

Metastore Versioned Cache#

Metastore cache only caches schema and table names. Other metadata would be fetched from the filesystem.

Note

Metastore Versioned Cache would be applicable only for Hive Catalog in the Presto Iceberg connector.

hive.metastore-cache-ttl=2d
hive.metastore-refresh-interval=3d
hive.metastore-cache-maximum-size=10000000

Extra Hidden Metadata Columns#

The Iceberg connector exposes extra hidden metadata columns. You can query these as part of a SQL query by including them in your SELECT statement.

$path column#

  • $path: Full file system path name of the file for this row

SELECT "$path", regionkey FROM "ctas_nation";
        $path                    |  regionkey
---------------------------------+-----------
 /full/path/to/file/file.parquet | 2

$data_sequence_number column#

  • $data_sequence_number: The Iceberg data sequence number in which this row was added

SELECT "$data_sequence_number", regionkey FROM "ctas_nation";
        $data_sequence_number     |  regionkey
----------------------------------+------------
             2                    | 3

Extra Hidden Metadata Tables#

The Iceberg connector exposes extra hidden metadata tables. You can query these as a part of a SQL query by appending name to the table.

$properties Table#

  • $properties : General properties of the given table

SELECT * FROM "ctas_nation$properties";
        key           |  value
----------------------+---------
 write.format.default | PARQUET

$history Table#

  • $history : History of table state changes

SELECT * FROM "ctas_nation$history";
           made_current_at            |     snapshot_id     | parent_id | is_current_ancestor
--------------------------------------+---------------------+-----------+---------------------
2022-11-25 20:56:31.784 Asia/Kolkata  | 7606232158543069775 | NULL      | true

$snapshots Table#

  • $snapshots : Details about the table snapshots. For more information see Snapshots in the Iceberg Table Spec.

SELECT * FROM "ctas_nation$snapshots";
             committed_at             |     snapshot_id     | parent_id | operation |                                                  manifest_list                                           |                                                                                 summary
--------------------------------------+---------------------+-----------+-----------+----------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2022-11-25 20:56:31.784 Asia/Kolkata  | 7606232158543069775 | NULL      | append    | s3://my-bucket/ctas_nation/metadata/snap-7606232158543069775-1-395a2cad-b244-409b-b030-cc44949e5a4e.avro | {changed-partition-count=1, added-data-files=1, total-equality-deletes=0, added-records=25, total-position-deletes=0, added-files-size=1648, total-delete-files=0, total-files-size=1648, total-records=25, total-data-files=1}

$manifests Table#

  • $manifests : Details about the manifests of different table snapshots. For more information see Manifests in the Iceberg Table Spec.

SELECT * FROM "ctas_nation$manifests";
                                           path                                  | length | partition_spec_id |  added_snapshot_id  | added_data_files_count | existing_data_files_count | deleted_data_files_count | partitions
---------------------------------------------------------------------------------+--------+-------------------+---------------------+------------------------+---------------------------+--------------------------+-----------
s3://my-bucket/ctas_nation/metadata/395a2cad-b244-409b-b030-cc44949e5a4e-m0.avro |   5957 |                 0 | 7606232158543069775 |                      1 |                         0 |                    0     |    []

$partitions Table#

  • $partitions : Detailed partition information for the table

SELECT * FROM "ctas_nation$partitions";
 row_count | file_count | total_size |           nationkey           |                   name                   |          regionkey           |                          comment
-----------+------------+------------+-------------------------------+------------------------------------------+------------------------------+------------------------------------------------------------
    25     |          1 |       1648 | {min=0, max=24, null_count=0} | {min=ALGERIA, max=VIETNAM, null_count=0} | {min=0, max=4, null_count=0} | {min= haggle. careful, max=y final packaget, null_count=0}

$files Table#

  • $files : Overview of data files in the current snapshot of the table

SELECT * FROM "ctas_nation$files";
 content |                                      file_path                               | file_format | record_count | file_size_in_bytes |        column_sizes         |       value_counts       |  null_value_counts   | nan_value_counts |          lower_bounds                     |             upper_bounds                   | key_metadata | split_offsets | equality_ids
---------+------------------------------------------------------------------------------+-------------+--------------+--------------------+-----------------------------+--------------------------+----------------------+------------------+-------------------------------------------+--------------------------------------------+--------------+---------------+-------------
   0     | s3://my-bucket/ctas_nation/data/9f889274-6f74-4d28-8164-275eef99f660.parquet | PARQUET     |           25 |               1648 | {1=52, 2=222, 3=105, 4=757} | {1=25, 2=25, 3=25, 4=25} | {1=0, 2=0, 3=0, 4=0} |  NULL            | {1=0, 2=ALGERIA, 3=0, 4= haggle. careful} | {1=24, 2=VIETNAM, 3=4, 4=y final packaget} | NULL         | NULL          | NULL

$changelog Table#

This table lets you view which row-level changes have occurred to the table in a particular order over time. The $changelog table represents the history of changes to the table, while also making the data available to process through a query.

The result of a changelog query always returns a static schema with four columns:

  1. operation: (VARCHAR) indicating whether the row was inserted, updated, or deleted.

  2. ordinal: (int) A number indicating a relative order that a particular change needs to be applied to the table relative to all other changes.

  3. snapshotid: (bigint) Represents the snapshot a row-level change was made in.

  4. rowdata: (row(T)) which includes the data for the particular row. The inner values of this type match the schema of the parent table.

The changelog table can be queried with the following name format:

... FROM "<table>[@<begin snapshot ID>]$changelog[@<end snapshot ID>]"
  • <table> is the name of the table.

  • <begin snapshot ID> is the snapshot of the table you want to begin viewing changes from. This parameter is optional. If absent, the oldest available snapshot is used.

  • <end snapshot ID> is the last snapshot for which you want to view changes. This parameter is optional. If absent, the most current snapshot of the table is used.

One use for the $changelog table would be to find when a record was inserted or removed from the table. To accomplish this, the $changelog table can be used in conjunction with the $snapshots table. First, choose a snapshot ID from the $snapshots table to choose the starting point.

SELECT * FROM "orders$snapshots";
                committed_at                 |     snapshot_id     |      parent_id      | operation |                                                                                       manifest_list                                                                                        |                                                                                                              summary
---------------------------------------------+---------------------+---------------------+-----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 2023-09-26 08:45:20.930 America/Los_Angeles | 2423571386296047175 | NULL                | append    | file:/var/folders/g_/6_hxl7r16qdddw7956j_r88h0000gn/T/PrestoTest8140889264166671718/catalog/tpch/ctas_orders/metadata/snap-2423571386296047175-1-3f288b1c-95a9-406b-9e17-9cfe31a11b48.avro | {changed-partition-count=1, added-data-files=4, total-equality-deletes=0, added-records=100, total-position-deletes=0, added-files-size=9580, total-delete-files=0, total-files-size=9580, total-records=100, total-data-files=4}
 2023-09-26 08:45:36.942 America/Los_Angeles | 8702997868627997320 | 2423571386296047175 | append    | file:/var/folders/g_/6_hxl7r16qdddw7956j_r88h0000gn/T/PrestoTest8140889264166671718/catalog/tpch/ctas_orders/metadata/snap-8702997868627997320-1-a2e1c714-7eed-4e2c-b144-dae4147ebaa4.avro | {changed-partition-count=1, added-data-files=1, total-equality-deletes=0, added-records=1, total-position-deletes=0, added-files-size=1687, total-delete-files=0, total-files-size=11267, total-records=101, total-data-files=5}
 2023-09-26 08:45:39.866 America/Los_Angeles | 7615903782581283889 | 8702997868627997320 | append    | file:/var/folders/g_/6_hxl7r16qdddw7956j_r88h0000gn/T/PrestoTest8140889264166671718/catalog/tpch/ctas_orders/metadata/snap-7615903782581283889-1-d94c2114-fd22-4de2-9ab5-c0b5bf67282f.avro | {changed-partition-count=1, added-data-files=3, total-equality-deletes=0, added-records=3, total-position-deletes=0, added-files-size=4845, total-delete-files=0, total-files-size=16112, total-records=104, total-data-files=8}
 2023-09-26 08:45:48.404 America/Los_Angeles |  677209275408372885 | 7615903782581283889 | append    | file:/var/folders/g_/6_hxl7r16qdddw7956j_r88h0000gn/T/PrestoTest8140889264166671718/catalog/tpch/ctas_orders/metadata/snap-677209275408372885-1-ad69e208-1440-459b-93e8-48e61f961758.avro  | {changed-partition-count=1, added-data-files=3, total-equality-deletes=0, added-records=5, total-position-deletes=0, added-files-size=4669, total-delete-files=0, total-files-size=20781, total-records=109, total-data-files=11}

Now that we know the snapshots available to query in the changelog, we can see what changes were made to the table since it was created. Specifically, this example uses the earliest snapshot ID: 2423571386296047175

SELECT * FROM "ctas_orders@2423571386296047175$changelog" ORDER BY ordinal;
 operation | ordinal |     snapshotid      |                                                                                                                   rowdata
-----------+---------+---------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 INSERT    |       0 | 8702997868627997320 | {orderkey=37504, custkey=1291, orderstatus=O, totalprice=165509.83, orderdate=1996-03-04, orderpriority=5-LOW, clerk=Clerk#000000871, shippriority=0, comment=c theodolites alongside of the fluffily bold requests haggle quickly against }
 INSERT    |       1 | 7615903782581283889 | {orderkey=12001, custkey=739, orderstatus=F, totalprice=138635.75, orderdate=1994-07-07, orderpriority=2-HIGH, clerk=Clerk#000000863, shippriority=0, comment=old, even theodolites. regular, special theodolites use furio}
 INSERT    |       1 | 7615903782581283889 | {orderkey=17989, custkey=364, orderstatus=F, totalprice=133669.05, orderdate=1994-01-17, orderpriority=4-NOT SPECIFIED, clerk=Clerk#000000547, shippriority=0, comment=ously express excuses. even theodolit}
 INSERT    |       1 | 7615903782581283889 | {orderkey=37504, custkey=1291, orderstatus=O, totalprice=165509.83, orderdate=1996-03-04, orderpriority=5-LOW, clerk=Clerk#000000871, shippriority=0, comment=c theodolites alongside of the fluffily bold requests haggle quickly against }
 INSERT    |       2 |  677209275408372885 | {orderkey=17991, custkey=92, orderstatus=O, totalprice=20732.51, orderdate=1998-07-09, orderpriority=4-NOT SPECIFIED, clerk=Clerk#000000636, shippriority=0, comment= the quickly express accounts. iron}
 INSERT    |       2 |  677209275408372885 | {orderkey=17989, custkey=364, orderstatus=F, totalprice=133669.05, orderdate=1994-01-17, orderpriority=4-NOT SPECIFIED, clerk=Clerk#000000547, shippriority=0, comment=ously express excuses. even theodolit}
 INSERT    |       2 |  677209275408372885 | {orderkey=17990, custkey=458, orderstatus=O, totalprice=218031.58, orderdate=1998-03-18, orderpriority=3-MEDIUM, clerk=Clerk#000000340, shippriority=0, comment=ounts wake final foxe}
 INSERT    |       2 |  677209275408372885 | {orderkey=18016, custkey=403, orderstatus=O, totalprice=174070.99, orderdate=1996-03-19, orderpriority=1-URGENT, clerk=Clerk#000000629, shippriority=0, comment=ly. quickly ironic excuses are furiously. carefully ironic pack}
 INSERT    |       2 |  677209275408372885 | {orderkey=18017, custkey=958, orderstatus=F, totalprice=203091.02, orderdate=1993-03-26, orderpriority=1-URGENT, clerk=Clerk#000000830, shippriority=0, comment=sleep quickly bold requests. slyly pending pinto beans haggle in pla}

SQL Support#

The Iceberg connector supports querying and manipulating Iceberg tables and schemas (databases). Here are some examples of the SQL operations supported by Presto:

CREATE SCHEMA#

Create a new Iceberg schema named web that stores tables in an S3 bucket named my-bucket:

CREATE SCHEMA iceberg.web
WITH (location = 's3://my-bucket/')

CREATE TABLE#

Create a new Iceberg table named page_views in the web schema that is stored using the ORC file format, partitioned by ds and country:

CREATE TABLE iceberg.web.page_views (
  view_time timestamp,
  user_id bigint,
  page_url varchar,
  ds date,
  country varchar
)
WITH (
  format = 'ORC',
  partitioning = ARRAY['ds', 'country']
)

Create an Iceberg table with Iceberg format version 2:

CREATE TABLE iceberg.web.page_views_v2 (
  view_time timestamp,
  user_id bigint,
  page_url varchar,
  ds date,
  country varchar
)
WITH (
  format = 'ORC',
  partitioning = ARRAY['ds', 'country'],
  format_version = '2'
)

Partition Column Transform#

Beyond selecting some particular columns for partitioning, you can use the transform functions and partition the table by the transformed value of the column.

Available transforms in the Presto Iceberg connector include:

  • Bucket (partitions data into a specified number of buckets using a hash function)

  • Truncate (partitions the table based on the truncated value of the field and can specify the width of the truncated value)

  • Identity (partitions data using unmodified source value)

  • Year (partitions data using integer value by extracting a date or timestamp year, as years from 1970)

  • Month (partitions data using integer value by extracting a date or timestamp month, as months from 1970-01-01)

  • Day (partitions data using integer value by extracting a date or timestamp day, as days from 1970-01-01)

  • Hour (partitions data using integer value by extracting a timestamp hour, as hours from 1970-01-01 00:00:00)

Create an Iceberg table partitioned into 8 buckets of equal size ranges:

CREATE TABLE players (
    id int,
    name varchar,
    team varchar
)
WITH (
    format = 'ORC',
    partitioning = ARRAY['bucket(team, 8)']
);

Create an Iceberg table partitioned by the first letter of the team field:

CREATE TABLE players (
    id int,
    name varchar,
    team varchar
)
WITH (
    format = 'ORC',
    partitioning = ARRAY['truncate(team, 1)']
);

Create an Iceberg table partitioned by ds:

CREATE TABLE players (
    id int,
    name varchar,
    team varchar,
    ds date
)
WITH (
    format = 'ORC',
    partitioning = ARRAY['year(ds)']
);

Create an Iceberg table partitioned by ts:

CREATE TABLE players (
    id int,
    name varchar,
    team varchar,
    ts timestamp
)
WITH (
    format = 'ORC',
    partitioning = ARRAY['hour(ts)']
);

CREATE VIEW#

The Iceberg connector supports creating views in Hive and Glue metastores. To create a view named view_page_views for the iceberg.web.page_views table created in the CREATE TABLE example:

CREATE VIEW iceberg.web.view_page_views AS SELECT user_id, country FROM iceberg.web.page_views;

INSERT INTO#

Insert data into the page_views table:

INSERT INTO iceberg.web.page_views VALUES(TIMESTAMP '2023-08-12 03:04:05.321', 1, 'https://example.com', current_date, 'country');

CREATE TABLE AS SELECT#

Create a new table page_views_new from an existing table page_views:

CREATE TABLE iceberg.web.page_views_new AS SELECT * FROM iceberg.web.page_views

SELECT#

SELECT table operations are supported for Iceberg format version 1 and version 2 in the connector:

SELECT * FROM iceberg.web.page_views;

SELECT * FROM iceberg.web.page_views_v2;

Table with delete files#

Iceberg V2 tables support row-level deletion. For more information see Row-level deletes in the Iceberg Table Spec. Presto supports reading delete files, including Position Delete Files and Equality Delete Files. When reading, Presto merges these delete files to read the latest results.

ALTER TABLE#

Alter table operations are supported in the Iceberg connector:

ALTER TABLE iceberg.web.page_views ADD COLUMN zipcode VARCHAR;

ALTER TABLE iceberg.web.page_views RENAME COLUMN zipcode TO location;

ALTER TABLE iceberg.web.page_views DROP COLUMN location;

To add a new column as a partition column, identify the transform functions for the column. The table is partitioned by the transformed value of the column:

ALTER TABLE iceberg.web.page_views ADD COLUMN zipcode VARCHAR WITH (partitioning = 'identity');

ALTER TABLE iceberg.web.page_views ADD COLUMN location VARCHAR WITH (partitioning = 'truncate(2)');

ALTER TABLE iceberg.web.page_views ADD COLUMN location VARCHAR WITH (partitioning = 'bucket(8)');

ALTER TABLE iceberg.web.page_views ADD COLUMN dt date WITH (partitioning = 'year');

ALTER TABLE iceberg.web.page_views ADD COLUMN ts timestamp WITH (partitioning = 'month');

ALTER TABLE iceberg.web.page_views ADD COLUMN dt date WITH (partitioning = 'day');

ALTER TABLE iceberg.web.page_views ADD COLUMN ts timestamp WITH (partitioning = 'hour');

TRUNCATE#

The Iceberg connector can delete all of the data from tables without dropping the table from the metadata catalog using TRUNCATE TABLE.

TRUNCATE TABLE nation;
TRUNCATE TABLE;
SELECT * FROM nation;
 nationkey | name | regionkey | comment
-----------+------+-----------+---------
(0 rows)

DELETE#

The Iceberg connector can delete data in one or more entire partitions from tables by using DELETE FROM. For example, to delete from the table lineitem:

DELETE FROM lineitem;

DELETE FROM lineitem WHERE linenumber = 1;

DELETE FROM lineitem WHERE linenumber not in (1, 3, 5, 7) and linestatus in ('O', 'F');

Note

Columns in the filter must all be identity transformed partition columns of the target table.

Filtered columns only support comparison operators, such as EQUALS, LESS THAN, or LESS THAN EQUALS.

Deletes must only occur on the latest snapshot.

DROP TABLE#

Drop the table page_views

DROP TABLE iceberg.web.page_views
  • Dropping an Iceberg table with Hive Metastore and Glue catalogs only removes metadata from metastore.

  • Dropping an Iceberg table with Hadoop and Nessie catalogs removes all the data and metadata in the table.

DROP VIEW#

Drop the view view_page_views:

DROP VIEW iceberg.web.view_page_views;

DROP SCHEMA#

Drop the schema iceberg.web:

DROP SCHEMA iceberg.web

Register table#

Iceberg tables for which table data and metadata already exist in the file system can be registered with the catalog using the register_table procedure on the catalog’s system schema by supplying the target schema, desired table name, and the location of the table metadata:

CALL iceberg.system.register_table('schema_name', 'table_name', 'hdfs://localhost:9000/path/to/iceberg/table/metadata/dir')

Note

If multiple metadata files of the same version exist at the specified location, the most recently modified one will be used.

A metadata file can optionally be included as an argument to register_table in the case where a specific metadata file contains the targeted table state:

CALL iceberg.system.register_table('schema_name', 'table_name', 'hdfs://localhost:9000/path/to/iceberg/table/metadata/dir', '00000-35a08aed-f4b0-4010-95d2-9d73ef4be01c.metadata.json')

Note

When registering a table with the Hive metastore, the user calling the procedure will be set as the owner of the table and will have SELECT, INSERT, UPDATE, and DELETE privileges for that table. These privileges can be altered using the GRANT and REVOKE commands.

Note

When using the Hive catalog, attempts to read registered Iceberg tables using the Hive connector will fail.

Unregister table#

Iceberg tables can be unregistered from the catalog using the unregister_table procedure on the catalog’s system schema:

CALL iceberg.system.unregister_table('schema_name', 'table_name')

Note

Table data and metadata will remain in the filesystem after a call to unregister_table only when using the Hive catalog. This is similar to the behavior listed above for the DROP TABLE command.

Schema Evolution#

Iceberg and Presto Iceberg connector support in-place table evolution, also known as schema evolution, such as adding, dropping, and renaming columns. With schema evolution, users can evolve a table schema with SQL after enabling the Presto Iceberg connector.

Parquet Writer Version#

Presto now supports Parquet writer versions V1 and V2 for the Iceberg catalog. It can be toggled using the session property parquet_writer_version and the config property hive.parquet.writer.version. Valid values for these properties are PARQUET_1_0 and PARQUET_2_0. Default is PARQUET_2_0.

Example Queries#

Let’s create an Iceberg table named ctas_nation, created from the TPCH nation table. The table has four columns: nationkey, name, regionkey, and comment.

USE iceberg.tpch;
CREATE TABLE IF NOT EXISTS ctas_nation AS (SELECT * FROM nation);
DESCRIBE ctas_nation;
  Column   |  Type   | Extra | Comment
-----------+---------+-------+---------
 nationkey | bigint  |       |
 name      | varchar |       |
 regionkey | bigint  |       |
 comment   | varchar |       |
(4 rows)

We can simply add a new column to the Iceberg table by using ALTER TABLE statement. The following query adds a new column named zipcode to the table.

ALTER TABLE ctas_nation ADD COLUMN zipcode VARCHAR;
DESCRIBE ctas_nation;
  Column   |  Type   | Extra | Comment
-----------+---------+-------+---------
 nationkey | bigint  |       |
 name      | varchar |       |
 regionkey | bigint  |       |
 comment   | varchar |       |
 zipcode   | varchar |       |
(5 rows)

We can also rename the new column to another name, address:

ALTER TABLE ctas_nation RENAME COLUMN zipcode TO address;
DESCRIBE ctas_nation;
  Column   |  Type   | Extra | Comment
-----------+---------+-------+---------
 nationkey | bigint  |       |
 name      | varchar |       |
 regionkey | bigint  |       |
 comment   | varchar |       |
 address  | varchar |       |
(5 rows)

Finally, we can delete the new column. The table columns will be restored to the original state.

ALTER TABLE ctas_nation DROP COLUMN address;
DESCRIBE ctas_nation;
  Column   |  Type   | Extra | Comment
-----------+---------+-------+---------
 nationkey | bigint  |       |
 name      | varchar |       |
 regionkey | bigint  |       |
 comment   | varchar |       |
(4 rows)

Time Travel#

Iceberg and Presto Iceberg connector support time travel via table snapshots identified by unique snapshot IDs. The snapshot IDs are stored in the $snapshots metadata table. You can rollback the state of a table to a previous snapshot ID. It also supports time travel query using VERSION (SYSTEM_VERSION) and TIMESTAMP (SYSTEM_TIME) options.

Example Queries#

Similar to the example queries in SCHEMA EVOLUTION, create an Iceberg table named ctas_nation from the TPCH nation table:

.. code-block:: sql

USE iceberg.tpch; CREATE TABLE IF NOT EXISTS ctas_nation AS (SELECT * FROM nation); DESCRIBE ctas_nation;

  Column   |  Type   | Extra | Comment
-----------+---------+-------+---------
 nationkey | bigint  |       |
 name      | varchar |       |
 regionkey | bigint  |       |
 comment   | varchar |       |
(4 rows)

We can find snapshot IDs for the Iceberg table from the $snapshots metadata table.

SELECT snapshot_id FROM iceberg.tpch."ctas_nation$snapshots" ORDER BY committed_at;
     snapshot_id
---------------------
 5837462824399906536
(1 row)

For now, as we’ve just created the table, there’s only one snapshot ID. Let’s insert one row into the table and see the change in the snapshot IDs.

INSERT INTO ctas_nation VALUES(25, 'new country', 1, 'comment');
SELECT snapshot_id FROM iceberg.tpch."ctas_nation$snapshots" ORDER BY committed_at;
     snapshot_id
---------------------
 5837462824399906536
 5140039250977437531
(2 rows)

Now there’s a new snapshot (5140039250977437531) created as a new row is inserted into the table. The new row can be verified by running

SELECT * FROM ctas_nation WHERE name = 'new country';
 nationkey |    name     | regionkey | comment
-----------+-------------+-----------+---------
        25 | new country |         1 | comment
(1 row)

With the time travel feature, we can rollback to the previous state without the new row by calling iceberg.system.rollback_to_snapshot:

CALL iceberg.system.rollback_to_snapshot('tpch', 'ctas_nation', 5837462824399906536);

Now if we check the table again, we’ll find that the newly inserted row no longer exists as we’ve rolled back to the previous state.

SELECT * FROM ctas_nation WHERE name = 'new country';
 nationkey | name | regionkey | comment
-----------+------+-----------+---------
(0 rows)

Time Travel using VERSION (SYSTEM_VERSION) and TIMESTAMP (SYSTEM_TIME)#

Use the Iceberg connector to access the historical data of a table. You can see how the table looked like at a certain point in time, even if the data has changed or been deleted since then.

// snapshot ID 5300424205832769799
INSERT INTO ctas_nation VALUES(10, 'united states', 1, 'comment');

// snapshot ID 6891257133877048303
INSERT INTO ctas_nation VALUES(20, 'canada', 2, 'comment');

// snapshot ID 705548372863208787
INSERT INTO ctas_nation VALUES(30, 'mexico', 3, 'comment');

// snapshot ID for first record
SELECT * FROM ctas_nation FOR VERSION AS OF 5300424205832769799;

// snapshot ID for first record using SYSTEM_VERSION
SELECT * FROM ctas_nation FOR SYSTEM_VERSION AS OF 5300424205832769799;
 nationkey |      name     | regionkey | comment
-----------+---------------+-----------+---------
        10 | united states |         1 | comment
(1 row)

In above example, SYSTEM_VERSION can be used as an alias for VERSION.

You can access the historical data of a table using FOR TIMESTAMP AS OF TIMESTAMP. The query returns the table’s state using the table snapshot that is closest to the specified timestamp. In this example, SYSTEM_TIME can be used as an alias for TIMESTAMP.

// In following query, timestamp string is matching with second inserted record.
SELECT * FROM ctas_nation FOR TIMESTAMP AS OF TIMESTAMP '2023-10-17 13:29:46.822 America/Los_Angeles';

// Same example using SYSTEM_TIME as an alias for TIMESTAMP
SELECT * FROM ctas_nation FOR SYSTEM_TIME AS OF TIMESTAMP '2023-10-17 13:29:46.822 America/Los_Angeles';
 nationkey |      name     | regionkey | comment
-----------+---------------+-----------+---------
        10 | united states |         1 | comment
        20 | canada        |         2 | comment
(2 rows)

The option following FOR TIMESTAMP AS OF can accept any expression that returns a timestamp with time zone value. For example, TIMESTAMP ‘2023-10-17 13:29:46.822 America/Los_Angeles’ is a constant string for the expression. In the following query, the expression CURRENT_TIMESTAMP returns the current timestamp with time zone value.

SELECT * FROM ctas_nation FOR TIMESTAMP AS OF CURRENT_TIMESTAMP;
 nationkey |      name     | regionkey | comment
-----------+---------------+-----------+---------
        10 | united states |         1 | comment
        20 | canada        |         2 | comment
        30 | mexico        |         3 | comment
(3 rows)